

Bluestone Dam Workshop on Rock Anchors September 17-18, 2002

Geological Controls on Overall Stability and Interface Design

Dave Weatherby

DAM TIEDOWNS Must

 Develop Required Pullout Resistance

Anchored in a Stable Rock Mass

Potential Failure Mechanism

Failure of the ROCK MASS

Failure of the GROUT/TENDON interface

Failure of the ROCK/GROUT interface

Rock Mass Stability Single Tiedown

Inverter Cone

Apex at Center of the Bond Length

Tiedown Uplift Capacity = Effective Weight of Cone

Effective Unit Weight = Total Unit Weight – Water Pressure

Usually Ignore the Shear Resistance Along the Cone

Rock Mass Stability Single Tiedown

Fractured and Weak Rock

Discontinuities
Define Shape of
Rock Mass

Rock Mass Stability Group Effect

Single Row

Rock Mass Stability

Shape of the Rock Wedge when Tiedown Installed at an Angle

Rock Mass Stability

- Attempt to locate the tiedowns to achieve maximum effectiveness in stabilizing the dam.
- Penstocks, galleries, embedments, and drainage systems will constrain anchor location.

Rock Mass Stability

- Start the bond length at least 10' below the bottom of the dam
- Increase the size of the rock mass by lengthening tiedowns
- Reduce interaction by: lengthening alternate tiedowns, changing angles and multiple rows
- FS 2 to 3

Grout/Tendon Bond

Three Components of Grout/Tendon Bond

- Adhesion
- Friction
- Mechanical Interlock

Adhesion

Physical Bond between the Surface of the Steel and the Grout

Adhesion is destroyed with small relative movements between the tendon and the grout

Friction

Depends on the Lateral Confining Stress and the Roughness of the Tendon and the Amount of Slip

Mechanical Interlock

Mobilization of Grout Shear Strength by Major Tendon Irregularities

Ribs on bars

Twists and Waves on Multi-Strand Tendons

Components of Grout/Tendon Bond

Bond Resistance

GROUT/TENDON BOND

- Grout/Tendon Bond is not Critical, Grout/Rock Bond Controls
- PTI Recommends Tendon Area ≤ 15% of Total Grout Area
- Strand Satisfy ASTM A 981-98

- Strength of the Rock
- Discontinuities in the Rock Mass
- Drilling Method and Hole Cleaning Method
- Grout w/c Ratio
- Grouting Method Tremie vs. Pressure
- Delay in Grouting

FE Study

Results of Coates and Yu's FE Study

Relative Movement

Depends Upon Strength of the Rock

Rock

Average Ult. Rock/Grout Bond (psi)

Granite & Basalt	250 - 450
Dolomitic Limestone	200 – 300
Soft Limestone	150 – 200
Slates & Hard Shales	120 – 200
Soft Shales	30 – 120
Sandstones	120 – 250
Weathered Sandstones	100 – 120
Chalk	30 – 155
Weathered Marl	25 – 35
Concrete	200 - 400

Allowable bond stress = <u>Ult. Bond Stress</u> 2 or 3

Discontinuities in the Rock Mass Effect E_r – Bond Stress Distribution and Magnitude of Bond Stress

Drilling Method and Hole Cleaning Method – High Bond Stress in a Clean Hole

Grout w/c Ratio → Shrinkage and Strength →Rock/Grout Bond Stress and Grout Bleed

Grouting Method – Tremie vs. Pressure

Grout Pressure (kg/cm²)

- 1- Medium Brussel's sands
- 2- Marly Limestone
- 3- Marls
- 4- Seine fluvial deposits
- 5- Clayey gravels and sands
- 6- Soft Cretaceous sediments
- 7- Hard Limestone

Delay in Grouting → Allows Some Rocks to Degrade → Lowers Bond

TIME DEPENDENT BEHAVIOR

Rock

Material

TYPES of TIME DEPENDENT BEHAVIOR

Creep

Relaxation

CREEP BEHAVIOR

CREEP RATE

0.08 in/log cycle

When Has Creep Been Observed

- Clay Shales and Poor Hole Cleaning
- Strands w/ Drawing Lub.
- Epoxy Coated Strand

Concluding Remarks

- Good Rock = High Bond Stress and Life is Good
- Weak Rock = Lower Bond Stress and More Care Required
- Poor Quality, Weak Rocks Require Careful Exploration, Water Pressure Measurements, Water Pressure Testing, Consolidation Grouting and Test Anchors